Title Discrete Mathematics II
Lesson Code 321-2450
Semester 2
ECTS 5
Hours (Theory) 3
Hours (Lab) 2
Faculty Kaporis Alexis

Syllabus

Real sequences: recursive definition, monotonicity, convergence. Sums and series. Solution of linear recursive equations. Power series. Generating functions. Graphs: basic terminology, isomorphism, Euler and Hamilton paths, the travelling salesman problem, planar graphs. Trees: definitions, binary trees, spanning trees, Dijkstra’s shortest path algorithm. Algorithms: Ο, Ω, Θ notation, time complexity, design principles.

Learning Outcomes

The course is intended to introduce students to the theoretical tools and methodologies of Computer Science at a second level. Upon completion of the course the student will have:

  • a basic knowledge of the terminology and properties of graphs and trees;
  • the ability to use combinatorial arguments in proofs;
  • an understanding of the notion of algorithm complexity and of the basic methodologies for its calculation;
  • the ability to state simple algorithms to solve elemental problems.

Prerequisite Courses

None required

Basic Textbooks

  • Κ. Rosen. «Διακριτά μαθηματικά και εφαρμογές τους», Εκδόσεις Α. Τζιόλα & Υιοί, 2008.
  • Γ. Βουτσαδάκης, Λ. Κυρούσης, Χ. Μπούρας, Π. Σπυράκης. «Διακριτά μαθηματικά – Ενιαίο», Γ. ΔΑΡΔΑΝΟΣ - Κ. ΔΑΡΔΑΝΟΣ Ο.Ε, 2008.
  • C.L. LIU. «Στοιχεία Διακριτών Μαθηματικών», Ιδρυμα Τεχνολογίας & Ερευνας-Πανεπιστημιακές Εκδόσεις Κρήτης, 2009.
  • S.S. Epp, Διακριτά Μαθηματικά με Εφαρμογές. Εκδόσεις Κλειδάριθμος, 2010.
  • Eric Lehman and Tom Leighton, "Mathematics for Computer Science", 2004. Διαθέσιμο μέσω του MIT OpenCourseWare.

Teaching and Learning Methods

 

Activity Semester workload
Lectures

39 hours

Review-Problem Session ασκήσεις  26 hours
Personal study 57 hours
Final exams 3 hours
Σύνολο μαθήματος   125 hours (5 ECTS)

 

Student Performance Evaluation

  • 5 in-class quizzes
  • Final written exam

Language of Instruction and Examinations

Greek

Delivery Mode

Weekly class meetings

Weekly recitations (devoted mostly to problem solving)