Title Discrete Mathematics I
Lesson Code 321-1500
Semester 1
ECTS 5
Hours (Theory) 3
Hours (Lab) 2
Faculty Kaporis Alexis

Syllabus

Logic: compound statements, conditional statements, predicates, quantifiers, methods of proof. Elementary number theory: divisibility, prime numbers, parity. Elementary set theory: operations, identities, cardinality, inclusion-exclusion principle. Mathematical induction. Combinatorial analysis: multiplication rule, permutations, orderings, combinations, the pidgeonhole principle, binomial coefficients. Binary relations, functions, equivalence relations, partial ordering relations.

Learning Outcomes

The aim of this course is a first exposure to the theoretical framework of Computer Science. Upon completion of the course, students will have the ability

  • to follow a basic proof;
  • to state problems in formal language;
  • to use basic proof techniques in elementary problems.

Prerequisite Courses

Not required.

Basic Textbooks

  1. Epp S.S.: 'Διακριτά Μαθηματικά με Εφαρμογές', Εκδόσεις Κλειδάριθμος, 2011, ISBN : 978-960-461-325-0 (in Greek).
  2. Rosen K.H.: Διακριτά Μαθηματικά και Εφαρμογές τους, Εκδόσεις Τζιόλα, 5η έκδοση, 2008, ISBN : 978-960-418-144-5 (in Greek).
  3. Liu C.L.: Στοιχεία Διακριτών Μαθηματικών Πανεπιστημιακές Εκδόσεις Κρήτης, 2009, ISBN: 978-960-524-072-1 (in Greek).

 

Teaching and Learning Methods

 

Activity Semester workload
Lectures 39 hours
Review-Problem Session hours 26 hours
Personal study 56 hours
Exam 1 hour
Final exams 3 hours
Course total 125 hours (5 ECTS)

Student Performance Evaluation

  • Small quizzes in class
  • Final exam

Language of Instruction and Examinations

Greek

Delivery Mode

Face-to-face.