[ 23/02/2023 - Τρέχουσα ] Υποψήφιος διδάκτορας
Πανεπιστήμιο Αιγαίου: Πολυτεχνική Σχολή Πληροφοριακών & Επικοινωνιακών Συστημάτων https://www.icsd.aegean.gr/
Πεδίο σπουδών: Τεχνολογίες Πληροφορικής και Επικοινωνιών.
Διατριβή: Διδακτορική διατριβή: Ιατρικής: Πολυπαραμετρική ανάλυση κλινικών - ιατρικών δεδομένων.
[ 30/09/2020 - 22/06/2022 ] ΠΜΣ Πληροφοριακών και Επικοινωνιακώ Συστημάτων
Πανεπιστήμιο Αιγαίου: Πολυτεχνική Σχολή Πληροφοριακών & Επικοινωνιακών Συστημάτων https://www.icsd.aegean.gr/
Τομέας σπουδών: Τεχνολογίες Πληροφορικής και Επικοινωνιών.
Τελικός βαθμός: 8,43 Επίπεδο στο EQF: EQF επίπεδο 7
Τύπος πιστωτικών μονάδων: ECTS Αριθμός πιστωτικών μονάδων: 90
Διπλωματική εργασία: Μοντέλα Πρόβλεψης Θνητότητας με Εφαρμογή Μηχανικής Μάθησης σε Ασθενείς με Εγκεφαλικό.
[ 30/09/2003 - 30/09/2009 ] Πτυχίο λογιστικής και χρηματοοικονομικής
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Χαλκίδας http://acc.teiste.gr/
Δ/νση: Δρ: Ψαχνά Ευβοίας, 34400, Χαλκίδα, Ελλάδα
Πεδίο σπουδών: Επιχειρήσεις, διοίκηση και δίκαιο
Τελικός βαθμός: 6,1 Επίπεδο στο EQF: Επίπεδο 6 του EQF
Πτυχιακή εργασία: Λογιστική των αποσβέσεων (ΔΛΠ No 16) ανάλυση και σύγκριση με την Ελληνική Νομοθεσία.
[ 30/09/2003 - 30/09/2005 ] Τεχνικό πτυχίο δικτύου υπολογιστών Ινστιτούτο Επαγγελματικής Κατάρτισης
Διεύθυνση: Α: 13561, Άγιοι Ανάργυροι - Αθήνα, Ελλάδα
Πεδίο(-α) σπουδών: Τεχνολογίες Πληροφορικής και Επικοινωνιών
Ως αφοσιομένος ερευνητής με μεταπτυχιακό στα Πληροφοριακά και Επικοινωνιακά Συστήματα, επιδιώκω επί του παρόντος την απόκτηση διδακτορικού διπλώματος στο δυναμικό πεδίο της μηχανικής μάθησης. Η εστίασή μου βρίσκεται στο σημείο τομής της μηχανικής μάθησης και της πολυπαραμετρικής ανάλυσης στοχεύοντας στον τομέα των κλινικών-ιατρικών δεδομένων. Είμαι παθιασμένος με την ανάπτυξη καινοτόμων αλγορίθμων και μεθοδολογιών που μπορούν να αναλύουν αποτελεσματικά και να εξάγουν πολύτιμες πληροφορίες από πολύπλοκα σύνολα δεδομένων υγειονομικής περίθαλψης. Μέσω της ακαδημαϊκής μου διαδρομής, φιλοδοξώ να συμβάλω στην πρόοδο της ιατρικής έρευνας, προωθώντας τη βαθύτερη κατανόηση των ασθενειών και βελτιώνοντας τα αποτελέσματα της υγειονομικής περίθαλψης μέσω της εφαρμογής τεχνικών μηχανικής μάθησης αιχμής.
Abstract
Background: Venous thromboembolism (VTE) is a chronic disorder with a significant health and economic burden. Several VTE-specific Clinical Prediction Models (CPMs) have been used to assist physicians in decision-making but have several limitations. This systematic review explores if machine learning (ML) can enhance CPMs by analyzing extensive patient data derived from electronic health records (EHRs). We aimed to explore ML-CPMs applications in VTE for risk stratification, outcome prediction, diagnosis, and treatment. Methods: Three databases were searched, PubMed, Google Scholar, and IEEE electronic library. Inclusion criteria focused on studies using structured data, excluding non-English publications, studies on non-humans, and certain data types such as natural language processing and image processing. Studies involving pregnant women, cancer patients, and children were also excluded. After excluding irrelevant studies, a total of 77 studies were included. Results: Most studies report that ML-CPMs outperformed traditional CPMs in terms of receiver operating area under the curve in the four clinical domains that were explored. However, the majority of the studies were retrospective, monocentric, and lacked detailed model architecture description and external validation, which are essential for quality audit. This review identified research gaps and highlighted challenges related to standardized reporting, reproducibility, and model comparison. Conclusion: ML-CPMs show promise in improving risk assessment and individualized treatment recommendations in VTE. Apparently, there is an urgent need for standardized reporting and methodology for ML models, external validation, prospective and real-world data studies, as well as interventional studies to evaluate the impact of AI in VTE.
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.
Abstract
Ischemic stroke is a medical emergency that requires hospitalization and occasionally, specialized care at the Intensive Care Unit. Mortality prediction in the ICUs has been a challenge for intensivists, since prompt identification could impact medical clinical practices and allow efficient allocation of health resources in the ICUs, which are extremely restricted, especially in the era of COVID-19 pandemic. Clinical decision support systems based on machine learning algorithms are taking advantage of the vast amount of information available in the ICUs and are becoming popular in the medical predictive analysis. This study aims to explore the feasibility of interpretable machine learning models to predict mortality in critically-ill patients suffering from stroke. To do so, a vast variety of clinical and laboratory information stored in the electronic health record, are pre-processed to allow taking into account the temporal characteristics of a patient’s stay. An 8-hour sliding observation window was utilized. For the experimental evaluation we used the Medical Information Mart for Intensive Care Database (MIMIC-IV). Results indicate sufficient ability to predict mortality at the end of a given day during the patient’s stay. Moreover, attribute evaluation highlights the important indicators to consider when following up with a patient.
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.
Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.