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ABSTRACT
The contribution of this paper is twofold. First, a new spatial
domain image registration technique with subpixel accuracy is
presented. This technique is based on a double maximization
of the correlation coefficient and provides a closed-form solu-
tion to the subpixel translation estimation problem. Second, an
efficient iterative scheme for integer registration is proposed,
which reduces significantly the number of searches, as com-
pared to the exhaustive search. This scheme can be used as a
pre-processing step in the sub-pixel accuracy technique, lead-
ing to lower computational complexity. Extensive simulation
results have shown that the performance of the proposed tech-
nique compares very favorably with respect to existing ones.

1. INTRODUCTION

Many image processing applications require image registra-
tion in order to estimate the correspondence between two or
more images. The image registration techniques proposed in
literature can be classified in feature-based and intensity-based
[1, 2]. Intensity-based techniques are more computationally
demanding, but avoid the sensitivity of the feature extraction
stage. Intensity-based registration can be achieved minimiz-
ing the compared images’ squared error, maximizing their
correlation [3], their mutual information [4] or their phase-
correlation [5], e.t.c. Some methods provide pixel-level reg-
istration, which may be satisfactory for some applications, but
other applications require subpixel accuracy. Such an accuracy
is usually provided by methods based on interpolation [6] and
depends highly on the interpolation algorithms’ quality. Other
approaches are based on the differential properties of the im-
age sequences [6], or formulate the subpixel registration as an
optimization problem [7].

A Fourier-based algorithm for image registration with sub-
pixel accuracy is presented in [8], where the image differences
are restricted to translations and uniform changes of illumina-
tion. The algorithm detects and removes the frequency compo-
nents that might cause errors in the shift estimation due to alias-
ing. In [9], it is shown that the signal power in the phase corre-
lation corresponds to the polyphase transform of a filtered unit
impulse centered at the point of registration. Recently, a fre-
quency domain technique has been proposed for the registra-
tion of aliased images, based on their low-frequency, aliasing-
free (or marginally affected by aliasing) part [10]. Frequency
domain is suitable for describing and handling aliasing and is
also suitable for global motion models. On the other hand, spa-
tial domain methods generally lend themselves for more gen-
eral motion models. In [11], an iterative scheme based on Tay-
lor expansion is presented and a pyramidal scheme is used to
increase the precision for large motion parameters. The authors

This work was supported in part by the General Secretariat of Research
and Technology under grant PENED 03ED/838.

of [12] use sparsely sampled regional correlation, providing ac-
curacy better than 0.2 pixels. In [13], an error function linear
in the model parameters is minimized using least-squares.

The technique proposed here has been motivated by the
approach suggested recently in [14, 15], where an enhanced
correlation-based method for stereo correspondence is pre-
sented. Based on [14, 15], we present here a new spatial do-
main technique, suitable for subpixel image registration, which
aims to the maximization of the correlation coefficient. In con-
trast to the interpolation based techniques, the proposed one
does not require the reconstruction of the intensity values and
provides a closed-form solution. Extensive simulation results
have shown that the performance of the proposed technique
compares very favorably with respect to existing ones. The
optimum subpixel translation is found with a slight increase
in the computational cost as compared to the integer registra-
tion problem, but, if the compared images are first registered
up to a pixel level, this cost is significantly reduced. Com-
monly, the pixel-level registration is obtained by maximizing
the correlation coefficient for N2 integer translations, where N
is the number of searches in each dimension. We propose here
a new efficient iterative scheme, which reduces the number of
searches to 2aN, where a is the number of iterations, which,
in most cases, is much smaller than N/2. This scheme con-
verges fast to the correct solution if the initial translation esti-
mation lies in the main lobe of the correlation coefficient func-
tion (i.e., the lobe around the global maximum). Otherwise,
proper re-initializations of the algorithm might be needed and
the number of searches becomes 2N ·∑k

i=1 ai, where k is the to-
tal number of the algorithm initializations and ai the number of
algorithm’s iterations for each initialization i. Note that ∑k

i=1 ai
also remains much smaller than N/2, in most cases.

In Section 2 the problem is formulated and the proposed
subpixel image registration technique is described. In Section
3 the efficient iterative scheme for pixel-level registration is
presented. Experimental results are provided in Section 4 and
in Section 5 the work is concluded.

2. SUBPIXEL IMAGE REGISTRATION

2.1 Problem Formulation

Let f be a reference image and ft a translated version of f .
Let also w be a window in f , with dimensions n× n and g a
search area in ft , with dimensions m×m (where m > n). All
the possible positions of window w in the search area g take
values in the set

I = [0,N−1]× [0,N−1], N = m−n+1. (1)

Let now s(x,y) be a window of the search area g that has the
same size with w and (x,y) denotes the coordinates of its upper
left corner. Then, image registration is equivalent to searching



for a (x0,y0) ∈I such that the following relation holds

s(x0,y0) = w, (x0,y0) ∈I . (2)

The correlation coefficient of windows w and s(x,y) is used as
similarity measure, which has the advantage of being invariant
to linear photometric distortions, and is defined as

C(x,y) = w̄T s̄(x,y) (3)

where w̄ = w/||w|| and s̄ = s/||s|| stand for the zero mean,
Euclidean normalized versions of vectors w = vec(w−mw)
and s(x,y) = vec

[
s(x,y)−ms(x, j)

]
, with mw and ms(x,y) denot-

ing the mean values of windows w and s(x,y), respectively,
and operator vec stacking each window’s columns in a column
vector of length n2.

The translation (x0,y0) that maximizes (3) is found by
computing the correlation coefficient for all the possible po-
sitions of w in g. In fact, the following maximization problem
has to be solved

max
(x,y)∈I

C(x,y). (4)

Solving this problem, we can register images with pixel accu-
racy, but since in many applications subpixel accuracy is re-
quired, we extend (in the next subsection) in the two dimen-
sions’ case the similarity measure proposed in [14, 15] and for-
mulate an appropriate maximization problem in order to obtain
the desired sub-pixel accuracy.

2.2 A New Measure for Subpixel Accuracy
For computing translations with subpixel accuracy, the corre-
lation coefficient in (3) has to be redefined as follows

C(x+ tx,y+ ty) = w̄T s̄(x+ tx,y+ ty) (5)

where tx and ty are continuous variables, which stand for the
subpixel translations. The corresponding maximization prob-
lem is

max
(x,y)∈I

max
(tx,ty)

C(x+ tx,y+ ty) (6)

which involves a maximization with respect to the integer
translation (x,y) and a maximization related to the subpixel
translation (tx, ty).

The form of the above correlation coefficient and the com-
putational cost of the maximization problem depend on the in-
terpolation used for the windows reconstruction. Moreover, if
the maximization of (6) with respect to (tx, ty) does not have a
closed form solution, a maximization algorithm is needed, in-
creasing significantly the computational cost. Otherwise, the
cost will increase only slightly as compared to that of the in-
teger translation estimation problem. Note that changing the
order of maximizations in (6) and sampling the continuous
variables, the total registration problem can be solved at the
expense of increased cost and bounded accuracy. In order to
avoid these problems, for a given integer translation, we incor-
porate in (5) the following first order interpolation kernel

s(x+ tx,y+ ty)≈ s(x,y)+ tx [s(x,y)−s(x−1,y)]
+ty [s(x,y)−s(x,y−1)] = s+ tx∆s1,0 + ty∆s0,1 (7)

which is, in fact, the first order Taylor approximation of the
translated window s(x + tx,y + ty). The vectors s(x− 1,y)
and s(x,y−1) correspond to the one-pixel translated versions
of window s(x,y) on axes x and y, respectively, and ∆s1,0 =

s(x,y)− s(x− 1,y), ∆s0,1 = s(x,y)− s(x,y− 1) are approxi-
mations of the spatial derivatives in directions x, y.

Let us now define the following quantities

ρk, l = w̄t s̄(x− k,y− l), λk, l =
||s(x− k,y− l)||

||s(x,y)||
rk, l = s̄t(x− k, l)̄s(x,y− l) (8)

where ρk, l corresponds to the correlation coefficient of win-
dow w with window s(x,y) (for k = l = 0) or its translated
versions s(x− k,y− l), rk, l is similarly defined, and λk, l is the
norm of s(x− k,y− l) to the norm of s(x,y) ratio. Let us also
define the following auxiliary quantities

a0 = ρ0,0 a1 = ρ0,0−ρ1,0λ1,0 a2 = ρ0,0−ρ0,1λ0,1

b0 = 1 b1 = 2(1− r1,0λ1,0) b2 = 2(1− r0,1λ0,1)
b3 = 2(1− r1,0λ1,0− r0,1λ0,1 + r1,1λ1,0λ0,1)

b4 = 1+λ 2
1,0−2r1,0λ1,0 b5 = 1+λ 2

0,1−2r0,1λ0,1. (9)

Incorporating (7) in (5), the correlation coefficient becomes
a function of the continuous translation parameters tx and ty.
Then, for a given integer translation (x,y), we have to find the
solution (t

′
x, t

′
y) that maximizes the following function

C(x+ tx,y+ ty) =
a0 +a1tx +a2ty√

b0 +b1tx +b2ty +b3txty +b4t2
x +b5t2

y

(10)
which implies that for a given (x0,y0) of (x,y) ∈ I , we have
to solve the following maximization problem

max
(tx,ty)

C(x0 + tx,y0 + ty). (11)

The maximization of (10) results in a closed form solution
given in the next theorem.

Theorem 1: Let (x0,y0) ∈I be given, the correlation co-
efficient be defined as in equation (10) and the denominator of
(10) be different from zero. Then, C(x0 + tx,y0 + ty) attains its
unique extremum for

t
′
x =
(a2b1−a1b2)(a1b2−a0b3)+(2a1b0−a0b1)(2a1b5−a2b3)
(a1b3−2a2b4)(a1b2−a0b3)− (a1b1−2a0b4)(2a1b5−a2b3)

(12)

and

t
′
y =

(a2b1−a1b2)(2a0b4−a1b1)+(2a1b0−a0b1)(2a2b4−a1b3)
(a1b3−2a2b4)(a1b2−a0b3)− (a1b1−2a0b4)(2a1b5−a2b3)

.

(13)

The extremum is a maximum, if and only if the Hessian matrix
of C(x0 + tx,y0 + ty) evaluated at (t

′
x, t

′
y) is negative definite.

Thus, using the above theorem, which is given without
proof due to space limitations, we can find the optimum sub-
pixel translation with a slight increase in the computational
cost. However, if the compared images are first registered up
to a pixel level, that cost can be significantly reduced. In order
to achieve low cost pixel-level registration, we propose in the
next section a new efficient iterative algorithm.



3. EFFICIENT ITERATIVE SCHEME FOR
PIXEL-LEVEL REGISTRATION

The computationally intensive part of a registration process is
the evaluation of the involved similarity measure for different
relative image positions. Due to the computational cost of spa-
tial domain convolution, several fast, but approximate, spatial
domain matching methods have been developed [16]. Since
the correlation coefficient cannot be computed via a simple
and efficient frequency domain procedure [17], we propose in
this section the use of an efficient spatial-domain iterative al-
gorithm for image registration with pixel accuracy.

Such a registration can be obtained by restricting the cor-
relation coefficient maximization to integer translations. The
number of the required searches is N2, where N is the number
of searches in each dimension, and the aim of the proposed al-
gorithm is to reduce this number by searching in columns and
rows successively. Following this searching strategy, the num-
ber of searches is reduced to 2aN, where a is the number of
iterations, which is, in most cases, much smaller than N/2. In
the next paragraph we give the outline of the proposed algo-
rithm.

3.1 Algorithm Description

Let f , ft , w, g and s be as defined in Section 2.1. The proposed
iterative algorithm for pixel level registration is as follows.

function [New f ,New ft] = iterative registration (reference image,
translated image, threshold)

f = reference image, ft = translated image, C f ft = threshold -1
while C f ft < threshold

Determine w and g
for i = 0 : N−1

C(i,0) = corr2 [w,s(i,0)]
end
x = f ind[C(x,0) == max(C(x,0))]

(∗) Register f , ft according to x → Intermediate images f
′

and f
′
t

Determine w
′

and g
′

for j = 0 : N−1
C(0, j) = corr2

[
w
′
,s
′
(0, j)

]

end
y = f ind [C(0,y) == max(C(0,y))]
Register f

′
, f

′
t according to y → New images New f , New ft

C f ft = corr2(New f ,New ft)

if
(
(x 6= 0) OR (y 6= 0)

)
AND (C f ft < threshold)

f = New f , ft = New ft
elseif (x == 0) AND (y == 0) AND (C f ft < threshold)

f =reference image, ft=translated image
Give a new random value for column translation, Newx
x = Newx
goto (∗)

end
end

The above function takes as input the initial reference and
translated images, along with a threshold value associated to
the correlation coefficient, C f ft , between the registered images.
The variables f and ft are set equal to the input images, while
the correlation coefficient, C f ft , is set equal to threshold− 1.
Subsequently, the while loop can be initiated. We must stress
on this point that the convergence as well as the efficiency of
the proposed algorithm heavily depends on the value of the
above mentioned threshold. The optimal adaptive update of
this threshold is currently under investigation. Hence in what

follows, we consider that there exists at least one location in
the search area, where the value of the correlation coefficient
is greater than the threshold value.

Under this assumption, as long as the condition C f ft <
threshold is true, the correlation coefficient, C(x,0), is com-
puted for N vertical translations of the window w in the search
area g. After finding the translation, x, that maximizes the cor-
relation coefficient, the images f and ft are registered accord-
ing to x and their common areas f

′
and f

′
t are kept. Then, new

window and search areas, w
′
and g

′
, are determined, which are

used for searching in rows. The horizontal translation, y, is
computed and the resulting images are New f and New ft . The
correlation coefficient, C f ft , between these images is also com-
puted.

If translation x or translation y is different from zero and
the correlation coefficient C f ft is smaller than the predeter-
mined threshold, the next iteration is performed, with New f
and New ft being the initial images. If translations x and y are
equal to zero, but the correlation coefficient C f ft is smaller than
the threshold, this implies that the algorithm has been trapped
in a local maximum and needs a perturbation in order to es-
cape from this. As expected, the speed of the algorithm’s con-
vergence depends mainly on the form of the correlation func-
tion and the initial translation estimate. If this lies in the main
lobe around the maximum of the correlation coefficient func-
tion (when it is computed for all possible translations), the al-
gorithm converges to the global maximum, since the shape of
the correlation coefficient function around its global maximum
value resembles a concave function. Thus, we may overcome
the algorithm’s trapping by simply re-initializing the algorithm
with a randomly selected initial estimate. Note, that in any
case, the aim is the proposed algorithm to achieve the perfor-
mance of the exhaustive search scheme, but with smaller com-
putational cost. In order to achieve our goal, first, the variables
f and ft are set equal to the function’s input images, a ran-
domly selected value for the initial vertical translation x, Newx,
is given and the algorithm continues performing the next oper-
ations in the while loop. Note finally that goto is used in order
to bypass the operations that correspond to the initial vertical
translation estimation. The algorithm converges if the transla-
tions x and y become zero and the correlation coefficient C f ft

between the registered images is equal or higher than the pre-
determined threshold.

Note that in case the algorithm needs re-initializations, the
number of searches becomes 2N ·∑k

i=1 ai, where k is the total
number of the algorithm initializations, i.e., the number of re-
initializations plus one (the initialization when the algorithm
is executed for the first time). Moreover, ai is the number of
iterations for each initialization and ∑k

i=1 ai is the total number
of algorithm’s iterations that, in most cases, is much smaller
than N/2. Examples that verify the above analysis are given in
the next section.

4. EXPERIMENTAL RESULTS

4.1 Experimental Convergence Study of the Pixel-Level
Registration Scheme

The iterative algorithm’s convergence was studied through ex-
tensive experiments, but due to space limitations only results
concerning the image of Lenna are presented here. Three win-
dow cases were examined, with dimensions 128×128, 64×64
and 32×32. The corresponding search areas were 228×228,
164× 164 and 132× 132, which means that the number of
searches was 101× 101 in all the above cases. We used 400



Table 1: 400 Experiments For Lenna
Window Size: 128×128 64×64 32×32

Correct Registrations 400 400 400
Re-Initializations 3 2 597

Max. Re-Initializations 1 1 15
Experiments with re-initialization 3 2 152
Mean Iterations (per experiment) 3.2200 4.7075 23.5675
Mean Searches (per experiment) 6.440×101 9.415×101 47.135×101

Table 2: Performance Evaluation Of The Compared Methods (Axis X, Axis Y)
S. Lenna Mean Error Error’s STD Max. Error Min. Error

Proposed method (−0.0015, 4.7575 ·10−5) (0.0317, 0.0248) (0.1111, 0.1094) (−0.0861,−0.0914)
FD method (radial=1) (−0.0109,−0.0044) (0.0508, 0.0264) (2.1742 ·10−5, 0.0044) (−0.5032,−0.2707)
FD method (radial=2) (0.0023,−0.0015) (0.0166, 0.0462) (0.1722, 0.2928) (−0.0934,−0.4896)
FD method (radial=3) (4.6096 ·10−4, 7.49 ·10−6) (0.0159, 0.0287) (0.1267, 0.1804) (−0.1411,−0.3010)
FD method (radial=4) (−0.0556,−0.0398) (0.7542, 0.8621) (0.0978, 4.3022) (−13.8289,−16.1364)
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Figure 1: Correlation coefficient function (a) and its contour
(b) for window of size 64×64.

Figure 2: Unregistered images generated as in [10].

different translations in our experiments, produced by a gen-
erator of normally distributed random numbers with standard
deviation equal to 10. The resulting numbers were rounded
towards the nearest integers. The proposed iterative algorithm
converged in all cases, but some re-initializations were needed.
Note, in Fig. 1, where a correlation coefficient function along
with its contour plot are shown for the case of window size
64× 64, that the position of the first estimate lies in the main
lobe.

The results for all the experiments we performed are shown
in Table 1. For the 128× 128 and 64× 64 windows, only 3
and 2 re-initializations are needed, the mean numbers of it-
erations per experiment, i.e., mean

(
∑k

i=1 ai
)
, are 3.2200 and

4.7075, which are much smaller than N/2, and the mean num-
bers of searches, i.e., 2N ·mean

(
∑k

i=1 ai
)
, are 6.4400×101 and

9.4150×101, respectively. In case a 32×32 window is used,
the algorithm needs to be re-initialized in 152 experiments.
The maximum number of re-initializations for one experiment
was equal to 15 and the total number of re-initializations was
597. Note, though, that this case is rather difficult, since the
tested translations take values comparable to the used window
size (32×32). However, the mean number of iterations per ex-
periment remains small (23.5675, which is much smaller than
N/2), while the mean number of searches is 47.1350×101.

4.2 Subpixel registration

The new subpixel registration technique was compared to a re-
cent frequency domain based method [10] that outperforms ex-
isting techniques [11, 18, 19]. In [10], the translation is com-
puted based on the compared images low frequency, aliasing-
free (or marginally affected by aliasing) part. The phase differ-
ence between the compared images is computed and for the
aliasing-free frequencies the corresponding linear equations
are written. Then, the shift parameters are found as the least
squares solution of these equations.

In [10], the test images are obtained via down-sampling.
As a result, integer shifts in the high-resolution images corre-
spond to subpixel (non-integer) shifts in the resulting images.
Moreover, a lowpass filter is used prior to down-sampling in
order to control the amount of aliasing. The initial images are
multiplied by a Tukey window in order the images to be cir-
cularly symmetric and avoid boundary effects. A pair of such
images is shown in Fig. 2. Similar approaches for producing
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method.

images with subpixel translations were used in [8, 20].
We produced such pairs of images (down-sampled by a fac-

tor 4) for 400 different translation pairs, derived by a generator
of normally distributed random numbers with standard devia-
tion equal to 10. For the two methods under comparison (i.e.,
the proposed one and that of [10]) we computed the error be-
tween the actual translations and their estimations. In Table 2,
the errors’ mean values, standard deviations, as well as maxi-
mum and minimum values, are shown.

As we mentioned above, in [10], the translation’s compu-
tation is based on a low-frequency part of the phase difference
between the compared images. We computed the error for
many different sizes (radials from 1 to 50) of the remaining
low-frequency part and the results are shown in Fig. 3. Note,
that the error remains relatively small, for small radials. Oth-
erwise, it significantly increases.

We obtained similar results in a large number of experi-
ments (we present here results only for Lenna) indicating that
the proposed technique is more accurate.

5. CONCLUSION

A new technique for subpixel image registration, based on
the correlation coefficient maximization, is proposed that pro-
vides a closed form solution. Extensive simulation results have
shown that the performance of the proposed technique com-
pares very favorably with respect to existing ones. The op-
timum subpixel translation is found with a slight increase in
the computational cost, but using the new efficient scheme for
pixel level registration as a pre-processing step, the compu-
tational complexity of the whole problem is significantly re-
duced.
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