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A practical approach 

to adopting Semantic 

Web technologies 

enables large 

organizations to share 

data while achieving 

clear private as well as 

public reuse benefits.

Many real-world tasks require the acquisition and integration of information 

from a distributed set of heterogeneous sources. Hence, there’s no shortage 

of opportunities for applications using Semantic Web (SW) technologies. The power 

of publishing and linking data in a way that machines can automatically interpret 

through ontologies is beginning to material-
ize.1 However, market penetration level is rela-
tively low, and it’s still no routine matter for an 
enterprise, organization, governmental agency, 
or business with large distributed databases to 
add them to the Web of linked and semantically 
enriched data. It’s also probably fair to say that 
many organizations still view the SW with some 
skepticism. In part, they may suspect that they’re 
expected to pioneer an approach in which quick 
wins are few. Moreover, cost and privacy issues 
arise when ever-increasing amounts of informa-
tion are linked into the Web.

Perhaps understandably, most academic work 
has focused on the global public gains of adopting 
SW technologies. Equally understandable, many 
organizations are wary of being early adopters if 
public gains are all they can anticipate. If that were 
the case, the SW would more likely be considered 
a corporate “social responsibility” than a business-
enhancing advance in information management. 
We argue, however, that the SW offers local, private 
gains for the individuals and organizations that link 
their data and information. These gains are insepa-
rable from the global, public gains, and cost-benefit 
analyses must consider both types to be accurate.

We discuss an approach to the initial stages of 
building SW applications. We designed the ap-
proach to be practical, cost effective, fast, and ap-

pealing to organizations that can’t afford to neglect 
the bottom line, take many risks with their informa-
tion, or think only in the long term. Such organiza-
tions must often negotiate a variety of obstacles— 
including scalability, different terminologies, and 
diverse formats—to efficiently share and reuse their 
information. We present our experiences with one 
project that targets the public sector (AKTivePSI) 
and one in the private sector (MRO Expressway).

Attracting organizations to the SW
Introducing any new technology to an organization 
requires careful management. However, introduc-
ing SW technology also involves selling the SW to 
an organization that can easily see the costs of con-
version seem overwhelming while the benefits are 
less clear.2 

We met with several organizations and listened 
to their views and concerns about SW costs and 
benefits. Table 1 presents some misconceptions 
about the demands on users. To render this technol-
ogy less daunting to potential users, we developed 
the following four principles.

Minimize disruption 	  
to existing infrastructure
Making a complete, fast transition to semantic 
knowledge bases (KBs) is unnecessary and imprac-
tical in the short to medium term. Organizations 
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need to know that adopting SW technology 
doesn’t mean throwing away existing data-
base and information technologies. Reengi-
neering information processing is a complex 
task facilitated by special conditions and 
structures that vary across countries and 
cultures. So, the first principle must be to 
minimize disruption to participants’ exist-
ing data and information flows and models.

An important part of our task is to show 
that SW adoption costs are relatively low. 
We’ve demonstrated how to use simple 
scripts to convert data into RDF triples with 
enriched interpretations, and adopted the 
approach of caching the given databases into 
triple stores. An alternative is to use a tech-
nology such as D2RQ (http://sourceforge. 
net/projects/d2rq-map), which enables lay-
ering an ontology on top of a non-RDF da-
tabase, thus removing the need to cache or 
change the original database’s structure.

We’ve found simulating a real-life sce-
nario useful. It lets us show that what we 
build and do in our lab environment can be 
done the same way outside it. For example, 
we treat the KBs as if the participants hosted 
them. This also helps bridge the credibility 
gap: it’s hard to imagine the SW’s utility in 
advance of its global availability. The docu-
ment Web faced similar challenges before 
the World Wide Web came into its own. 
Sector-specific SWs and SW intranets can 
be compelling illustrations.

Use small, 	  
well-focused ontologies
It’s not realistic to assume that an organi-
zation will build one monolithic ontology 
for all its data and information or that dif-
ferent organizations will agree on one se-
mantic model. Constructing a new ontology 
for each information asset and designing it 
to represent only what’s stored in a particu-
lar database has proved a good intermediate 
step. We can then map these small ontolo-
gies to form a small SW.

Ontologies vary according to their de-
gree of formalization, their purpose, and 
the subject matter they represent. One rec-
ommended first step toward building an 
ontology is to scope its domain to make 
sure it doesn’t grow larger than necessary. 
The appropriate size depends on the ontol-
ogy’s purpose and domain. Some, such as 
the Gene Ontology (GO, www.geneontol-
ogy.org), are designed to represent entire 
domains and tend to be very large. Other 
ontologies might serve the needs of spe-
cific applications and can be smaller. Still 
others are data dependent and built mainly 
to represent and improve accessibility to a 
data collection. The smaller and simpler 
the ontology, the less expensive and time- 
consuming it is to develop and maintain.

Constructing ontologies requires skills 
such as modeling knowledge and exper-
tise. Small organizations or organizations 

on limited budgets, such as government 
bodies, worry about the possible high cost 
of building complex knowledge structures. 
We’ve been able to demonstrate how much 
organizations can achieve with practical 
ontologies that are scaled down to fit indi-
vidual information assets rather than entire 
domains. They can gradually link such on-
tologies together to facilitate data sharing. 
They might later require more elaborated 
ontologies to further automate ontology 
mapping or to check for data inconsis-
tency. However, starting small is important 
to massage perceptions of affordability for 
most organizations.

Show added value
Providing better access to information isn’t 
enough to completely win information pro-
viders’ interest, support, and active partic-
ipation. You must also show examples of 
where and what the added value of integra-
tion and shared access will be. Most orga-
nizations have needs—and sometimes la-
borious procedures—for acquiring data and 
information from other sources. A semanti-
cally enabled content-exchange channel of-
fers direct benefits with respect to consis-
tency checking, relative ease of integration 
and distributed querying, and efficient data 
and information exchange and merging.

Integration from multiple content sources 
adds to the value of knowledge augmenta-

Table 1. Common misconceptions about the Semantic Web.

Misconception Reality

Everyone must agree on the same terminology to 
enable data and information sharing.

Different groups use different terminologies, with lightweight mappings where required to 
ease sharing and communication.

Ontologies are typically large and complex. Heavyweight and complex ontologies encode domain knowledge. Applications don’t 
always require such ontologies; their data is often well represented using relatively light-
weight ontologies.

Ontologies are expensive to design, build, and 
maintain.

Some ontologies encode a great deal of domain knowledge and can be expensive to build. 
In these heavyweight ontologies, the larger the potential user community the more it off-
sets the cost of construction. Lightweight ontologies can have wide applicability and can 
be cost effective to build in terms of overall utility to the community.3

Information and data are taken out of current 
knowledge management practices, expensively 
converted to RDF, and replaced with new stan-
dards and technology.

RDF creation can be automated, using simple scripts, APIs, or conversion languages such 
as Grddl (Gleaning Resource Descriptions from Dialects of Languages). Data and infor-
mation can be kept in their current formats, and cached or exported in RDF.

Providing access to data and information benefits 
consumers and competitors but offers no quick 
wins for the provider.

In the long run, exposing data and information will provide gains for owners as well as the 
whole network, just as exposing documents provided gains when the original Web took 
off. In the short term, facilitating information reuse generates quick wins for organiza-
tions with a large quantity of distributed legacy data in heterogeneous formats.

The promiscuous release of data and information 
will be a privacy nightmare.

Standards are being developed to control access and reuse policies. In the meantime, as 
with conventional databases and Web technologies, organizations can pick and choose 
what data and information to expose and share.
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tion and verification. The integration offers 
useful insights into data set quality for the 
provider involved, helping to uncover er-
rors and inconsistencies and highlighting 
knowledge gaps.

Preserve provenance and privacy
Many agencies and institutions are instinc-
tively secretive about their data. The SW 
vision is to remove human processing from 
knowledge acquisition as far as is feasible. 
However, the idea of publishing data with-
out controlling its presentation context is 
very new in most industrial and government 
circles (although an ancient problem dat-
ing back at least to Plato’s Phaedrus). These 
agencies need assurance that SW technol-
ogy will let them choose what to share and 
what to keep private.

Some of the organizations we met with 
expressed great concern about possible 
misuse of data or information once the 
SW technology enabled access and reuse. 
To ameliorate these concerns, we transfer 
each resource we received into a separate 
KB with its own ontology. This approach 
eliminates any risks of contamination from 
one database to another. Furthermore, each 
ontology contains a few classes and prop-
erties to represent the data source, such 
as the supplier’s name, data set name, and 
date supplied. We also attach source infor-
mation to all triples in the triple store.

Privacy is a complex issue. Many of us 
are prepared to surrender our privacy for 
gains in efficiency or monetary benefit; oth-
ers defend personal privacy as a pillar of a 
liberal democratic society. Unless and un-
til such political dilemmas are resolved, 
organizations must carefully consider how 
far to exploit SW and other information 
technologies.4

The World Wide Web Consortium (W3C) 
is developing technologies and protocols to 
create a policy-aware Web. The W3C stan-
dards that eventually emerge from this pro-
cess will enable information users, owners, 
and subjects to express policies for informa-
tion use and negotiate about them.5

Constructing SW applications
We followed these principles in building 
two SW applications, one in the public 
and the other in the private domain. Once 
we had the application data for these proj-
ects, the building process involved simi-
lar steps in both domains. We summarize 
them here.

Construct ontologies
To ensure low complexity in the ontologies 
we built for the provided data sets, we lim-
ited their scope and size. Small ontologies 
are cheaper and easier to build, maintain, 
understand, use, and commit to. None of the 
participating organizations’ databases re-
quired a large number of concepts and re-
lationships to represent the stored informa-
tion. We were able to show that ontologies 
aren’t hard to build if their purpose is rep-
resenting databases and information assets 
of circumscribed scope. We also showed 
that they don’t require consensus on a com-
mon vocabulary. With ontology-mapping 
techniques, local terminologies prove suf-
ficiently useful. 

The average number of classes in our 
ontologies was 30, with a median of 10 
classes.

Generate RDF
From an ontology, we created instances by 
running simple scripts over the data to pro-
duce RDF. Initially, we generated the scripts 
manually for a particular database/ontology 
pair. When possible, we reused these scripts 
across similar databases and ontologies. 
Although we built the scripts manually, a 
framework for semiautomatic script genera-
tion is conceivable. We used the Jena API 
(http://jena.sourceforge.net) to write most 
of the scripts, which made them reusable 
and easy to tune for new data sets and on-
tologies. This process demonstrated the rel-
ative ease of converting legacy data to RDF 
using simple and free SW technology.

Although we needed small ontologies to 
interpret the data, we also needed a scalable 
KB to hold the millions of RDF triples gen-
erated. To store the generated RDF files, we 

used 3Store (www.aktors.org/technologies/
3store), an RDF triple store developed in 
the Advanced Knowledge Technologies 
(AKT) project (www.aktors.org). This tri-
ple store provides a Sparql (Sparql protocol 
and RDF query language) endpoint—that 
is, a servlet that accepts Sparql queries and 
returns XML results.

By publishing RDF in accordance with 
best practices,6 this data becomes viewable 
with general-purpose RDF browsers such as 
Tabulator (www.w3.org/2005/ajar/tab).

Uniform Resource Identifiers (URIs) 
play a fundamental role in SW publishing. 
All SW entities of interest, such as infor-
mation resources, real-world objects, and 
vocabulary terms, need a URI reference. 
Once we have URI references, we can insist 
that they should be dereferenceable.7 This 
means a person or an application can look 
up a URI over the Web and retrieve infor-
mation about the identified resource.

Migrate to the Semantic Web
URI reuse increases connectivity between 
published data, facilitating discovery of re-
lated data.7 However, sometimes it’s unclear 
who should reuse whose URIs, especially 
when organizations aren’t experienced in 
this field and are unaware of other efforts 
to enrich data semantically. Nevertheless, 
you can connect ontologies to each other by 
mapping their equivalent URIs.

Ontologies facilitate integration by us-
ing soft mappings between concepts and 
instances that queries or data browsers can 
follow to find similar or duplicated enti-
ties. We’ve used the special owl:sameAs prop-
erty to link any mapped entities. Connect-
ing our KBs in this way let us provide much 
greater flexibility and querying power than 
the original data structures allowed.

Because one key aim of this research is to 
show the added value of using SW technol-
ogy for publishing and using data, we had 
to show how to form a bigger semantic net-
work by integrating the KBs containing all 
the project data. Accordingly, we performed 
mappings of both local ontologies and their 
instances.

Even though automatic ontology map-
ping has been a research focus for many 
years and many tools are available for it, 
our ontologies’ relatively small size made it 
easier to map them manually than to correct 
automated mappings. The mapping process 
wasn’t difficult, although the participating 
organizations’ domain expertise provided 

Integration from multiple 

content sources offers  

useful insights into data set 

quality, helping uncover  

errors and highlighting 

knowledge gaps.
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important input to it. As we will show later, 
mapping doesn’t have to be complete to be 
useful. You can draw significant value from 
mapping even a small number of concepts.

Our data-centric SW approach makes 
mapping the instance data to each other 
useful as well. These mappings must be au-
tomated because there are usually many 
instances to map. We do this with simple 
scripts that search for duplicates of specific 
instance types (for example, postcodes and 
airplane models). An owl:sameAs link can be 
added automatically between the correspond-
ing instances once we or the automated tool 
finds such a mapping. These processes cre-
ate several files that contain RDF owl:sameAs 
triples linking various parts of the data. We 
store these files separately from the data and 
invoke them in queries. To retrieve data from 
the KB, our applications use Sparql queries. 
Because the ontologies and data have been 
linked as described, it is possible to extract 
information from multiple data sources.

AKTivePSI
The UK Office of Public Sector Informa-
tion (OPSI) manages all the government’s 
intellectual property, including setting 
standards, delivering access, and encourag-
ing the reuse of public-sector information. 
OPSI also regulates holders of public-sector 
information (PSI), such as the Met Office 
and the Ordnance Survey, in their informa-
tion-trading activities.

Information policy has developed rap-
idly in the UK over the past five years, with 
Freedom of Information legislation as well 
as an EU directive on opening access to PSI, 
but no large-scale research has addressed 
the potential for reuse with SW technolo-
gies and approaches. OPSI initiated a small 
project, AKTivePSI,8 to show what could be 
achieved if public-sector information was 
made available for reuse in an enabling way.

Throughout the project, we consulted reg
ularly with many governmental organiza
tions, including the London boroughs of Cam-
den (www.camden.gov.uk) and Lewisham  
(www.lewisham.gov.uk), Ordnance Survey  
(www.ordnancesurvey.co.uk), Stationary Of- 
fice (TSO, www.tso.co.uk), Met Office (www. 
metoffice.gov.uk), Environment Agency (www. 
environment-agency.gov.uk), and Office of Na
tional Statistics (ONS, www.statistics.gov.uk). 

Direct outcomes of AKTivePSI include 
the following:

The London Gazette (www.gazettes- •

online.co.uk/home.spx?geotype=London) 
is building OWL ontologies to represent 
parts of ITS data and is working toward 
publishing this data in RDF.
The OPSI oversaw the development of a 
URI schema, which it’s using to gener-
ate URIs for government legislation and 
copyright statements.
The Camden Borough Council added a 
SW engineer to its staff force to help the 
council to join the SW.
The Ordnance Survey is continuing its 
SW work and research; it has already 
built several ontologies and released sev-
eral data sets.

Initially, the project aimed to draw to-

gether a sufficiently large set of heteroge-
neous information from a selection of public- 
sector organizations to

explore how SW technology could help 
turn government information into reus-
able knowledge to support e-government;
investigate the best practical approaches 
to achieve this goal, in terms of collect-
ing data and constructing ontologies;
show how data can be integrated and 
identify existing government taxonomies 
that are useful for this task; and 
provide evidence of the added value from 
undergoing his process. 

To help focus the requests for content, we 
collected information from the geographi-
cal area covered by the two participating 
London boroughs.

Public-sector data sets
Several participating organizations made 
databases available for the project (table 2). 

•

•

•

•

•

•

•

We developed scripts to convert this data to 
RDF automatically, in correspondence with 
the designated organizations’ ontologies. In 
total, we constructed 13 ontologies, one for 
each data set in table 2.

Mappings
For example, we developed two ontologies 
for data sets from the Lewisham Borough 
Council. Each ontology has classes repre-
senting property, address, and postcode. 
We linked these concepts with owl:sameAs 
to indicate that they represent the same 
concepts. 

Many simple mappings were also avail-
able, such as mapping the concept Premises 
from the Camden’s Food Premises ontology 
to the Property class in its Land and Prop-
erty ontology. Although simple, such map-
pings can still be powerful. The postcode 
instance N6 6DS in one KB mapped to the 
instance pc_N66DS in another. Because 
these instances really did refer to the same 
object, we could infer much more informa-
tion about it by noting the identity. In fact, 
we found that simply linking to one data ob-
ject (the postcode) was enough to glean use-
ful information from various data sets for the 
creation of interesting mashup applications.

Mashing up 	  
distributed knowledge bases
Once data is available in easily parsable and 
understandable formats such as RDF, mash-
ups become much easier to generate by 
searching RDF KBs and mashing up data 
on the fly—a clear benefit of linking. We 
created two such mashups in AKTivePSI to 
demonstrate these benefits and the relative 
ease of constructing them from semanti-
cally represented knowledge.

The Camden Food Premises data set 
gives information about hygiene inspec-
tions and health risks of various premises 
in the Camden area that handle food. The 
risk categories range from A, which is high 
risk, to E, which is low risk. The category 
is based on the premises’ cleanliness, com-
pliance with regulations, type of prepara-
tion that’s performed, and so on. The Food 
Premises database contains much informa-
tion on these properties, but displaying the 
information on a map is difficult because 
the data set lacks geographical coordinates.

However, the Ordnance Survey’s Address 
Layer and Points of Interest (PointX) data 
sets do contain geographical coordinates 
for businesses and properties. The instance 

A small project, AKTivePSI, 

showed what could be 

achieved if public-sector 

information was made 

available for reuse  

in an enabling way.
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mapping of postcodes we performed earlier 
helped reduce our search space for finding 
matching addresses in the data sets. Indeed, 
once we found matches, we could assert 
that they were the same, thereby avoiding 
the need to search again.

To create the mashup, we wrote several 
Sparql queries that searched for each prem-
ise’s address from the Food Premises data 
set in each of the two Ordnance Survey data 
sets. When we found a match, we retrieved 
the coordinates and displayed the premise 
on a Google map. The information from 
Food Premises together with the mapping 
between the data sets provided extra context 
to instances from either data set. The PointX 
data set gains access to the food premises’ 
risk level (as well as the implicit knowledge 

that the premises are used for preparing 
food), and the Food Premises data set gar-
ners exact coordinates for the premises. Fig-
ure 1 shows a simple Google Maps mashup 
that uses the mapping to provide a visual 
display of the Food Premises data set.

This type of mashup promotes public 
awareness and commercial competition. 
For example, one particular business that 
was placed within the high-risk category 
has glowing customer reviews on restaurant 
review sites across the Internet.

Inconsistencies
Data and information integration from mul-
tiple sources adds the value of knowledge 
augmentation and verification. Integrating 
data sets can give the data provider useful in-

sights into a data set’s quality. For example,  
the Ordnance Survey’s Address Layer 2 data 
set provides a list of businesses, including 
their addresses and their geolocations, and 
the PointX data set provides similar infor-
mation. However, we found that the two 
lists of businesses didn’t match. For in-
stance, some businesses were in one data set 
but not the other. In some cases, the PointX 
data set contained several businesses listed 
at the same address, while the Ordnance 
Survey Address Layer 2 listed only one. 
Was this an error? The data set lacked tem-
poral information, so perhaps it held both 
former and the current tenants. Or perhaps 
several businesses occupy different floors 
in the same building. Inferring an answer 
is difficult, but at least the integration can 

Table 2. Data sets provided to AKTivePSI, the number of RDF triples  
we generated for each data set, formats, and a description of what the data is about.

Data set No. of RDF triples Format Data description

Camden Borough Council

Land and Property Gazetteer 2.3M Excel Properties in Camden, full address, coordinates, and type (residen-
tial/nonresidential/mixed)

Food Premises 84K Excel Food-related premises in Camden, their business names, hygiene 
inspection results, addresses, and classifications (for example, res-
taurant, school, bar)

Local Businesses 170K Excel Businesses in Camden, names, addresses, contact info, and busi-
ness type

Licenses 100K MSSQL Licenses for businesses in Camden, their addresses, license types, 
and expiration dates

Councillors and Committees 29K Excel Councillors and committees, subcommittees, who sits on which 
committee, and councillors’ personal information

Meeting minutes 106K Text Web pages of committee’s meeting minutes

Lewisham Borough Council

Land and Property Gazetteer 4M Excel Properties in Lewisham, their full addresses, and coordinates

Property Tax Bands 10K Excel Tax property references, description, rate payers, rate value, and 
single-string addresses

Ordnance Survey (data for Camden and Lewisham only)

Address Layer 1 768K XML Data about buildings, addresses, and coordinates

Address Layer 2 11.7M XML Data about buildings, addresses, and coordinates, and building clas-
sifications (for example, hospital, university)

PointX (Points of Interest) 467K XML Various landmarks and businesses, with names, addresses, and 
coordinates

The Stationery Office London Gazette (entire database was provided, but only that below was used)

Administration Notices 120K Text Notices for the appointment of administrators for corporate insol-
vencies

Deceased Estates 3.2M Text Death notices of individuals, names, addresses, description and date 
of death, and address of representatives
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flag possible quality issues for information 
managers to resolve. 

MRO Expressway
The airline industry regularly gathers and 
publishes data about aircraft orders, sales, 
registrations, engine specifications, com-
patibility, repair shop locations, and so 
on. However, the data comes in various 
textual forms with little machine-readable 
structure. We developed an application 
to store and manipulate a wide range of 
such data, such as historical aircraft de-
liveries, new aircraft sales, engine types, 

MRO (Maintenance, Repair and Over-
haul) business details, thermal spray coat-
ings, and market details. Users can query 
the consolidated data to answer questions 
such as the number and type of engines in 
MRO shops in any geographical area.

MRO Expressway uses a few informa-
tion sets and a simple model to forecast the 
worldwide civil-engine repair business.9 We 
demonstrated this capability in great detail 
for one particular activity—that is, thermal 
spray coatings. The numbers generated by 
our application agree well with other pub-
lished forecasts (for example, see Aero-

Strategy Management Consulting at www.
aerostrategy.com). However, the technology 
could also be a platform for many other ap-
plication domains, such as design.

Strategically, we intended MRO Ex-
pressway to show what a linked SW could 
offer a particular industrial sector. Such 
sector-based proofs of concept must them-
selves be capable of being built cost-effec-
tively and according to the principles we’ve 
described.

System objectives
The current drive to minimize emis-

sions has increased attention to component 
coatings. Closely defining coatings and 
their effects on performance is a difficult 
task that would benefit enormously from a 
system containing coating types and per-
formance data. Designers and engineers 
could examine materials, coatings, and 
service options to identify specific gaps in 
knowledge. The system could also provide 
a framework for building a strategically 
important design tool.

MRO Expressway has three principle 
objectives:

Consolidate data from multiple hetero-
geneous sources into a single represen-
tation that facilitates extracting informa-
tion beyond what the individual sources 
can provide.
Provide a graphical interface to view and 
explore data.
Forecast future MRO recoating business 
by estimating the number of planes and 
engines in operation at a regional level.

These objectives are typical of the gains 

•

•

•

Figure 1. Google Maps mashup of the Camden Food Premises data set. The mashup 
results from mapping the Food Premises data to the Ordnance Survey’s Address 
Layer II and PointX data sets.

Table 3. Data sets provided to the airline industry Maintenance, Repair, and Overhaul application.

Data set No. of RDF triples Format Data description

Airbus

Airbus-Orders 29K Excel Airlines, aircraft, and number ordered, delivered, and operational

Boeing

Boeing-Deliveries 140K Excel Airline, country, region, model, engine fitted, order date, and number ordered

Engine Yearbook 2007

Aircraft-Engines 768 Excel Aircraft, model, type, number of engines, and compatible engines

Engine-Overhaul 1K PDF Company name, address, and auxiliary-power-unit types

CIA

Factbook 205K RDF Country coordinates, flags, demographics, and national statistics on communi-
cations and economics
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that users can expect from linking and se-
mantically enriching data.

Aviation industry data sets
Information describing airplane models, 
engine types, and the MRO shops that can 
repair them is available from several pub-
lic sources. Manufacturers such as Airbus 
and Boeing provide detailed information 
on the planes each airline orders in a vari-
ety of formats, such as Excel spreadsheets 
and PDF documents. We developed several 
scripts to convert this information to RDF. 
Table 3 outlines the data sets used in this 
application, including the number of triples 
created, the source data format, and a sum-
mary of the information they contain. As 
with AKTivePSI, the overhead for building 
and mapping the ontologies, and writing 
the scripts to generate instance data wasn’t 
excessive.

In the first stage, we created a suitable on-
tology to capture the semantics and struc-
ture of each data source. Although much of 
the data is replicated in different sources, in 
terms of instances (for example, that Ameri-
can Airlines is from the US) and concepts 
(for example, aircraft, engine), the data 
granularity differed significantly. We there-
fore built different ontologies to better suit 
each data set. 

For example, the Boeing-Deliveries data 
set specifies the date an order was made, the 
airline that made it, the airplane model and 
quantity ordered, and the engine. But the 
Airbus-Orders data set provides only sum-
maries for each airline, stating the number 
ordered of each model, the numbered deliv-
ered, and the number currently operational. 
The decision to build different ontologies 
meant some overlap and redundancy, but it 
also simplified task planning strategically 
and pragmatically. The benefits—unlike 
the costs—increased.

After converting the source data into 
RDF, we used the owl:sameAs property to 
link concept instances from each data set 
that refer to the same entity. This stage pro-
vides the power to query over multiple data 
sources simultaneously. For example, by 
linking instances of airlines and countries 
between the Boeing and Airbus data sets, 
users can query the knowledge base for all 
orders made by region, country, or airline. 

Data presentation
As with AKTivePSI, MRO Expressway 
centers on a straightforward Google map in-

terface (see Figure 2). The map area depicts 
various pieces of information held in, or cal-
culated from, data stored in the triple store. 
In Figure 2, the map area shows the loca-
tions of MRO shops, which users can select 
to view additional information, such as the 
company name and the engine models it 
can repair. In the bottom part of the screen, 
a tabular data browser lets users inspect the 
data. The interface contains several methods 
for presenting data, with views to highlight 
regional information, repair shops, or quan-
tities of MRO recoating business generated 
by region and time period (including levels 
of future business based on a forecasting al-
gorithm, as shown in Figure 3).

We built both the AKTivePSI and 
MRO Expressway applications 

to cover information stores of real-world 
complexity and heterogeneity. This process 
involved selling the use of SW technology 
to clients who were, if not skeptical, at least 
understandably risk averse. Persuading or-
ganizations to be in the SW vanguard can 
be difficult, especially if your strategy is 
to enlist them in a public service. To con-
vince them to devote scarce resources to 
the task, you must highlight the private 
gains. Because the main SW source papers 
emphasize the public benefits over the pri-
vate, information officers could be forgiven 
for thinking they face a trade-off between  

Figure 2. The Maintenance, Repair, and Overhaul (MRO) Expressway GUI. The 
Google map provides a straightforward interface to the information available 
through data in the RDF triple store.

Figure 3. The MRO Expressway GUI. A graph of future business is based on industry 
parameters, with user-set values on the left side.
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private expenditure and public benefit.
These applications showed clear benefits 

at relatively low costs. Building small, data-
centric ontologies was an easily achievable 
goal. We think the lessons will interest the 
wider SW field, where arguments continue 
regarding the cost of developing and main-
taining ontologies, and will contribute to 
Web science as it investigates the complex 
interactions between the Web and the offline 
world.10 The technologies we’ve discussed 
are precursors to the next level of machine 
information processing, as we move from a 

Web linked primarily through documents to 
a Web linked at a much finer granularity of 
content.
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