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The field of machlne learning strives to develop methods 
and techniques to  automate the acquisition of new infor- 
mation, new skills, and new ways of organizing existing 
information. This article reviews the major approaches to 
machine learnlng In symbolic domains, illustrated with 
occasional paradigmatic examples. 

Why Machine Learning? 

Learning is ubiquitous in intelligence, and it is natural 
that Artificial Intelligence (AI), as the science of intelli- 
gent behavior, be centrally concerned with learning. 
There are two clear reasons for this concern, one practical 
and one theoretical. With respect to the first, AI has now 
demonstrated the utility of expert systems, but these sys- 
tems often require several man-years to construct. An ex- 
pert system consists of a symbolic reasoning engine plus a 
large domain-specific knowledge base. Expert systems 
that rival or surpass human.performance at very narrowly 
defined tasks are proliferating rapidly as A1 is applied to 
new domains. A better understanding of learning methods 
would enable us to automate the acquisition of the 
domain-specific knowledge bases for new expert systems, 
and thus greatly speed the development of applied A1 pro- 
grams. On the theoretical side, expert systems are unat- 
tractive because they lack the generality that science re- 
quires of its theories and explanations. On this dimension, 
the study of learning may reveal general principles that ap- 
ply across many different domains. 

A third research goal is to emulate human learning 
mechanisms, and thus come to a better understanding of 
the cognitive processes that underlie human knowledge 
and skill acquisition. In addition to improving our 
knowledge of human behavior, studying human learning 
may produce benefits for AI, since humans are the most 
flexible and robust (if slow) learning systems in existence. 

Hence, one objective of machine learning is to combine the 
capabilities of modern computers with the flexibility and 
resilience of human cognition. As Simon [l] bas pointed 
out, if learning could be automated and the results of that 
learning transferred directly to other machines which 
could further augment and refine the knowledge, one 
could accumulate expertise and wisdom in a way not possi- 
ble by humans-each individual person must learn all 
relevant knowledge without benefit of a direct copying 
process. Thus, no single mind can hold the collective 
knowledge of the species. 

An Historical Sketch 

Historically, researchers have taken two approaches to 
machine learning. Numerical methods such as discrimi- 
nant analysis have proven quite useful in perceptual do- 
mains, and have become associated with the paradigm 
known as Pattern Recognition. In contrast, Artificial In- 
telligence researchers have concentrated on symbolic 
learning methods,* which have proven useful in other do- 
mains. The symbolic approach to machine learning has 
received growing attention in recent years, and in this arti- 
cle we review some of the main approaches that have been 
taken within this paradigm, and outline some of the work 
that remains to be done. 

Within the symbolic learning paradigm, work first fo- 
cused on learning simple concepts from examples. This 
originally involved artificial tasks similar to questions 
found in intelligence tests given to children, such as 
“What do all these pictures have in common?” and “Does 
this new picture belong in the group?’’ Such tasks involve 
the formulation of some hypothesis that predicts which in- 
stances should be classified as examples of the concept. 
Not too surprisingly, psychologists were among the active 
researchers in this early stage (e.g., Hunt, Marin, and 

*Correspondence should be addressed to Pat Langley, Department 
of Information and Computer Science, University of California, Irvine, 
CA 92717. 
(Cj 1984 by John Wiley & Sons, Inc. 

*Samuel’s [2] early checkers learning system was a notable exception 
to the later trend, relying mainly on a parameter fitting method to h- 
prove performance. 
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Stone [3]). Subsequent work focused on learning progres- 
sively more complex concepts, often requiring larger 
numbers of exemplars. Recent work has focused on more 
complex learning tasks, in which the learner does not rely 
so heavily on a tutor for instruction. For example, some of 
this research has focused on learning in the context of 
problem solving, while others have explored methods for 
learning by observation and discovery. Learning by 
analogy with existing plans or concepts has also received 
considerable attention. 

In the following pages, we examine four categorical 
tasks that have been addressed in the machine learning 
literature-learning from examples, learning search heu- 
ristics, learning by observation, and language acquisition. 
These four representative tasks do not, by any means, 
cover all approaches to machine learning, but they should 
provide an illustrative sample of the issues, methods, and 
techniques of primary concern to the field. In each case, 
we describe the task, consider the main approaches that 
have been employed, and identify some open problems in 
the area. As is typical in a survey article, we can only high- 
light the best known approaches and results in the area of 
machine learning, giving the reader a feeling for where the 
field as a whole has been and where it is heading. The seri- 
ous reader is encouraged to digest other reviews of ma- 
chine learning work by Mitchell [4], Dietterich and 
Michalski IS], and Carbonell, Michalski, and Mitchell [6] .  

Learning Concepts from Examples 

Methods for learning concepts from examples have re- 
ceived more attention than any other aspect of machine 
learning. The task appears straightforward: given a set of 
positive and negative instances of a concept, generate 
some rule or description that correctly identifies these and 
all future examples as instances or noninstances of the 
concept. However, despite its apparent simplicity, the ap- 
proaches taken to solving this problem are nearly as 
numerous as the people who have worked on it. Below, we 
consider one approach to learning from examples, and 
then examine some of the dimensions along which dif- 
ferent approaches to this problem vary. After this, we 
discuss some open issues in learning from examples that 
remain to be addressed. 

An Example 

Perhaps the best known research on learning from ex- 
amples is Winston’s [7] work on the “arch” concept. 
Figure 1 presents two examples of this concept and one 
counterexample that are very similar to those presented to 
Winston’s system. Given these instances, one might con- 
clude that 

“An ARCH consists of two vertical blocks and one 
horizontal block .” 

This hypothesis covers both positive instances and ex- 
cludes the negative one. Alternately, one could define 

+ + 
FIG. 1. Positive and negative instances of “arch.” 

“arch” as simply a union of all positive examples of ARCH 
ever encountered. However, the principles of brevity and 
generality preclude us from formulating such a definition, 
since we would like our concept to be as simple as possible, 
and for it to be able to predict new positive and negative in- 
stances. Given the first hypothesis, there is hope that a 
simple and general definition of “arch” will converge and 
help us recognize future examples of arches. 

Now let us consider the three instances shown in Figure 
2. Upon considering the positive instance, we realize that 
our concept of arch is too restrictive, since it excludes this 
instance. Therefore, we revise the concept to 

“An ARCH consists of two vertical blocks and one 
horizontal object. ” 

However, this new hypothesis covers some of the negative 
instances, suggesting that it is overly general in some 
respect. Revising the definition to exclude these instances, 
we might get: 

“An ARCH consists of two vertical blocks that do rzot 
touch and a horizontal object that rests atop both blocks.” 

One can continue along these lines, gradually refining 
the concept to include all the positive but none of the nega- 
tive examples. New positive instances that are not covered 
by the current hypothesis (errors of omission) tell us that 
the concept being formulated is overly specific, while new 
negative examples that are covered by the hypothesis (er- 
rors of commission) tell us it is overly general. We have not 
been very specific about how the learner responds to these 
two situations, but we consider some of the alternatives 
below. All systems that learn from examples employ these 
two types of information, though we will see that they use 
them in quite different ways. 

Lest the reader get the false impression that modifying 
an existing definition of a concept to accommodate a new 
positive or negative exemplar is always a simple process, 

+ 

FIG. 2. Additional positive and negative examples of “arch.“ 
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FIG. 3 .  Still more positivc and negative instances of “arch.” 

we offer the positive and negative examples in Figure 3. 
We challenge the reader to devise an automated process 
that can modify “ARCH” to account for these examples. 
One insight that arises from these instances is that our con- 
cept of ARCH might involve some fuiicrioiiul aspects as 
well as the structural ones we have focused on so far. We 
shall have more to say on this matter later. 

The Dimensions of Learning 

As Mitcliell (41 and Dietterich and Michalski (51 have 
pointed out, all A1 systems that learn from examples can 
he viewed as carrying out search through a space of possi- 
ble concepts, represented as recognition rules or declara- 
tive descriptions. Moreover, this space is partially or- 
dered* along the dimension of generality, and it is natural 
to use this partial ordering to organize the search process. 
However, at this point the similarity between systems ends. 
The first dimension of variation relates to the direction of 
the search through the rule space. Discriniinutioii-bused 
concept learning programs begin with veiy general rules 
and make them more specific until all instances can be cor- 
rectly classified, while geiierulizcition-bused systems begin 
with very specific rules and make them more general. 
Since these two methods approach the goal concept from 
different directions and more than one concept may be 
consistent with the data, the two methods need not arrive 
at the same answer. Dietterich and Michalski have called 
the rules lcarned by discrimination systems discriniiiiuiit 
descriptions, and the rules learned by generahation sys- 
tems churucreristic descriptions. In general, the latter will 
be more specific than the former. 

A second dimension of variation relates to the manner 
in which search through the rule space is controlled. Some 
systems carry out a dcpth:/irst search through the space of 
rules, while others employ a brendth-first search. In 
depth-first search, the learner focuses on one hypothesis at 
a time, generating more general or more specific versions 
of this (depending on the direction of the search) until it 
finds a description that accounts for the observed in- 
stances. In breadth-first search, the system considers a 
number of alternate hypotheses simultaneously, though 
many are eliminated as they fail to account for the data. 
Breadth-first search strategies have greater memory re- 

*It is thispartialordering that leads to branching, and thus to search. 
If thc space wcrc completely ordered. then the task of learning rules 
would be much simpler. 

quirements than depth-first methods, but need never back 
up through the search space. 

A third dimension of variation involves the manner in 
which data are handled. All-at-once systems require all in- 
stances to be present at the outset of the learning process, 
while iiicrenieiital systems deal with instances one at a 
time. The former tend to be more robust with respect to 
noise, while the latter are more plausible models of the 
human learning process. Finally, concept learning pro- 
grams differ in the operators they use to move through the 
rule space. Data-driven systems incorporate instances in 
the generation of new hypotheses, while enumerutive sys- 
tems* use some other source of knowledge to generate 
states, and employ data only to evaluate these states. 

Given these four dimensions, we can determine that z4 = 
16 basic types of concept learning systems are possible. at 
least in principle. New researchers in machine learning 
might take as an exercise the task of classifying existing 
systems in terms of these dimensions, and brave individ- 
uals might attempt to develop a learning system that fills 
one of the unexplored combinations. In order to clarify the 
dimensions along which concept learning systems vary, let 
us examine two programs that lie at opposite ends of the 
spectrum on each dimension. For the sake of clarity, we 
will simplify certain aspects of the programs. The first is 
Quinlan’s ID3 system [8], which has been tested in the do- 
main of chess endgames, where the concepts to be learned 
are “lost in one move,” “lost in two moves,” and so forth. 
The second is Hayes-Roth and McDermott’s SPROUTER 
[9] which has been tested on a number of complex rela- 
tional instances like those in Figures 1 through 3. 

ID3 represents concepts in terms of discrimination net- 
works, as with the disjunctive concept [(large and red) or 
(blue and square and small)] shown in Figure 4. The sys- 
tem begins with only the top node of a network, and grows 
its decision tree one branch at a time. For instance, the 
system would first create the (red or blue) branch 
emanating from the top node. Next, it would create a 
branch coming from one of the new nodes, if necessaiy. 
The tree is grown downward, until terminal nodes are 
reached which contain only positive or negative instances. 
Thus, the system can be viewed as discrintii~ntion-based, 
moving from very general rules to very specific ones. At 
each point, it must select one attribute as more discrimi- 
nating than others, so it carries out a depth-first search 
through the space of rules. ID3 is given a list of potentially 
relevant attributes by the programmer, so that in deciding 
which branch to create, it uses the data only in evaluating 
these attributes. The system is thus enumerutive rather 

‘Mitchell 141 has called thesegenerule ond test systems, while Diet- 
terich and Michalski IS] have called them model-driven systems. 
However, A1 associates the first term with systems that proceed ex- 
haustively through a list of alternatives, and associates the second term 
with systems that rely on large amounts of domain-specific knowledge. 
We prefer the term enumerative, since a learning system can enumerate 
a set of alternate hypotheses at each stage in its search, without being 
either of these. 
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FIG. 4. A concept expressed as a discrimination nctwork. 

than data-driven in its search through the rule space. 
Finally, the program has all data available at the outset, so 
that it can use statistical analyses to distinguish discrim- 
inating attributes from undiscriminating ones; as a result, 
ID3 is an all-ar-orice concept learning system rather than 
an incremental one. The exact evaluation function Quin- 
Ian uses to direct search is based on information theory, 
but Hunt, Marin, and Stone 131 have used another evalua- 
tion function, and the exact function seems to be less im- 
portant than the overall search organization. 

Hayes-Roth and McDermott's SPROUTER [9] is his- 
torically interesting, since it was one of the first alter- 
natives to Winston's early work on learning from 
examples. This program attempts to learn conjunctive 
characteristic descriptions for a set of data. moving from a 
very specific initial hypothesis based 011 the first positive 
instance to more general rules as more instances are gath- 
ered. Thus, Hayes-Roth and McDermott's concept learn- 
ing system is generalizatiorr-Das~~d rather than discrimina- 
tion-based. SPROUTER also differs from ID3 in carrying 
out a breudfh-first search through the rule space, rather 
than a depth-first search. With respect to positive in- 
stances, the system is data-drivcw, since it uses these in- 
stances to generate new hypotheses by finding common 
structures between them and the current hypotheses. 
However, the program is enuwierative with respect to neg- 
ative instances, since it uses these only to eliminate overly 
general hypotheses. Similarly, SPROUTER processes 
positive instances in an increnientul fashion, reading them 
in one at a time and generalizing its hypotheses accord- 
ingly. However, it retains all negative instances in order to 
evaluate the resulting hypotheses, and processes them in 
an all-at-once manner. Thus, SPROUTER is something 
of a hybrid system in that it treats positive and negative in- 
stances in quite different ways. 

Open Problems in Learning from Examples 

A number of problems remain to be addressed with re- 
spect to learning from examples. Most of these relate to 

simplifying assumptions that have typically been made 
about the concept learning task. For instance, many re- 
searchers have assumed that no noise is present (i.e., all in- 
stances are correctly classified). Howcver, there are many 
real-world situations in which no rule has perfect predic- 
tive power, and heuristic rules that are only usually correct 
must be employed. Some learning methods (such as @in- 
Ian's) can be adapted to deal with noisy data sets, while 
others (such as Hayes-Roth and McDermott's) seem less 
adaptable. In any case, one direction for future work 
would be to identify those approaches that are robust with 
respect to noise, and to identify the reasons for their 
robustness. Most likely, tradeoffs exist between an ability 
to deal with noise and the number of instances required for 
learning, but it would be useful to know the exact nature of 
such relationships. 

A related simplification is that the correct representa- 
tion is known. If a learning system employs an incomplete 
or incorrect representation for its concepts, then it may be 
searching a rule space that does not contain the desired 
concept. One approach is to construct as good a rule as 
possible with the representation given; any system that can 
deal with noise can handle incomplete representations in 
this manner. A more interesting approach is one in which 
the system may improve its representation. This is equiv- 
alent to changing the space of rules one is searching, and 
on the surface at least, appears to be a much more chal- 
lenging problem. Little work has been done in this area, 
but Utgoff [lo] and Lenat [ l l ]  have made an interesting 
start on the problem. 

A final simplifying assumption that nearly all concept 
learning researchers have made is that the concept to be 
acquired isallor none. In other words. an instance eithcr is 
an example of the concept or it is not; there is no middle 
ground. However, very few of our everyday concepts are 
like this. Some birds fit our bird stereotype better than 
others, and some chairs are nearer to the prototypical 
chair than others. (Is a Dodo a bird? Is a Platypus a better 
bird? If a person sits on a log, is it a chair? Is it a better 
chair if we add stubby legs and use a second log as a back- 
rest?) Unfortunately, all of the existing concept learning 
systems rely fairly heavily 011 the sharp and unequivocal 
distinction between positive and negative instances, and it 
is not clear how they might be modified to deal with 
fuzzily-defined concepts such as birds and chairs. This is 
clearly a challenging direction for future research in ma- 
chine learning. 

The vast majority of work on learning concepts from ex- 
amples has assumed that a number of instances must be 
available for successful learning to occur. However, re- 
cently a few machine learning researchers have taken a 
somewhat different approach. DeJong [ 121 has explored 
the use of causal information to determine the relevant 
features in a positive instance of a complex concept, such 
as kidnappirig. By focusing on causal connections between 
events (such as the reason one would pay money to ensure 
another's safety), his system is able to formulate a plausi- 
ble hypothesis on the basis of a single positive instance and 
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no negative instances. Winston [ 131 has taken a similar 
approach to learning concepts such as cup. His system is 
presented with a.firrrctionu1 description of a cup (e.g., that 
it must be capable of containing liquid, that it must be ca- 
pable of being grasped) and a single positive instance of 
thc concept. The system then uses its knowledge of the 
world to decide which structural features of the example 
allow the functional features to be satisfied, again using 
causal reasoning. These structural features are used in 
formulating the definition of the concept. Both ap- 
proaches rely on causal information, and both relate this 
to some form offirnctionul knowledge. This new approach 
promises concept learning systems that are much more ef- 
ficient than the traditional syntuctic methods, while re- 
taining the generality of the earlier approaches. We expect 
to see much more work along these lines in the future. 

Learning Search Methods 

One of the central insights of A1 is that intelligence in- 
volves the ability to solve problems by seurching the space 
of possible actions and possible solutions, and to employ 
knowledge to constrain that search. In fact, one of the ma- 
jor differences between novices and experts in a complex 
domain is that the former must search extensively, while 
the latter use domain-specific ,heuristics to achieve their 
goal. In order to understand the nature of these heuristics, 
and how they may be learned, we must recall that search 
involves states and‘operators. A problem is stated in terms 
of an initial state and a goal, and operators are used to 
transforni the initial state into one that satisfies the goal. 
Search arises when more than one operator can be applied 
to a given state, requiring consideration of the different al- 
ternatives. Of course, some constraints are usually given in 
terms of the legul conditions under which each operator 
may apply, but these constraints are seldom sufficient to 
eliminate search. In order to accomplish this, the learner 
must also acquire heurktic conditions on the operators. 
For example, Figure 5 presents a simple search tree involv- 

ing two operators (01 and 02), with the solution path 

1 

shown in bold lines. If the problem solver knew the 
heuristic conditions on each operator, it would be able to 
generate the steps along the solution path without con- 
sidering any of the other moves, The task of learning 
search methods involves determining these heuristic con- 
dit ions. 

The problem of learning search heuristics from ex- 
perience can be divided into three steps. First, the system 
must generate the behavior upon which learning is based. 
Second, it must distinguish good behavior from bad be- 
havior, and decide which part of the performance system 
was responsible for each. In other words, it must assign 
credit and blame to its various parts. Finally, the system 
must be able to modify its performance so that behavior 
will improve in the future, Different learning programs 
can vary on each of these three dimensions. For instance, 
though their initial performance component will carry out 
search, it may use depth-first search, breadth-first search, 
means-ends analysis, or any one of many other methods 
for directing the search process. Below we consider some 
alternative approaches to dealing with credit assignment 
and modification of the performance system. 

Given this framework, the task of learning from exam- 
ples is easily seen as a special case of the task of learning 
search heuristics, in which a single operator is involved 
and for which the solution path is but one step long. No 
true search control is necessary for the performance com- 
ponent, since feedback occurs as mon as a single “move” 
has been taken. Credit assignment is trivialized, since the 
responsible component is easily identified as the rule sug 
gesting the “move.” However, the modification problem 
remains significant, and in fact the task of learning from 
examples can be viewed as an artificial domain designed 
for studying the modification problem in isolation from 
other aspects of the learning process. In a similar fashion, 
the task of learning search heuristics can be seen as the 
general case of learning from examples, in which a dif- 
ferent “concept” must be learned for each operator. 
Learning heuristics is considerably more difficult than 
learning from examples, since the learner must generate 
its own positive and negative instances, and since the 
credit assignment problem is nontrivial. 

FIG. 5. A simple search tree. 

Assigning Credit and Blame 

As we have discussed, if a learning system is to improve 
its behavior, it must decide which components of its per- 
formance system are responsible for desirable behavior, 
and which led to undesirable behavior. In general, assign- 
ing credit and blame can be difficult because many actions 
may be taken before knowledge of results is obtained, and 
any one of these actions may be responsible for the error. 
For instance, if the performance component is repre- 
sented as a set of production rules, one must decide which 
of those rules led the system down an undesirable path. 
The problem of credit assignment is trivial in learning 
from examples since feedback is given as won as a rule ap- 
plies, However, the task is more formidable in the area of 
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learning search heuristics, and recent progress in this area 
has resulted mainly from new insights about methods for 
assigning credit and blame. 

The most straightforward of these approaches relies on 
waiting until a complete solution path to some problem 
has been found. Since moves along the solution path led 
the system toward the goal, one can infer that every move 
on this path is a positive instance of the rule that proposed 
the move. Similarly, moves that lead one step ofl of the 
solution path are likely candidates for negative instances 
of the rules that proposed them (though it is possible that 
alternate solutions starting with these moves were over- 
looked). Let us return to the problem space in Figure 5, 
with the solution path shown in bold. The move from state 
1 to state 2 and from state 5 to state 6 would be classified as 
good instances of operator 01, while the move from state 2 
to state 5 would be marked as a good instance of operator 
0 2 .  In contrast, the moves from state 1 to state 3, and from 
state 5 to state 7 would be labeled as bad instances of 01, 
while the moves from state 2 to 4, and from state 5 to 8 
would be noted as bad instances of 02 .  Moves more than 
one step off the solution path (these are not shown in the 
figure) are not classified; since they were not responsible 
for the initial step away from the goal, they are not at fault. 
At least two recent strategy learning systems-Mitchell, 
Utgoff, and Banerji’s LEX I141 and Langley’s SAGE 
[lsl-have used this heuristic as their basic method for 
assigning credit and blame to components of their perfor- 
mance systems. Other systems, including Brazdil’s ELM 
[16] and Kibler and Porter’s learning system [ 171, have us- 
ed a similar technique, though their programs required 
the solution path to be provided by a benevolent tutor. 
Sleeman, Langley, and Mitchell [18] have discussed the 
advantages of this method for “learning from solution 
paths.” 

One limitation of this approach is that it encounters dif- 
ficulty in domains involving very long solution paths and 
extensive problem spaces. Obviously, one cannot afford to 
search exhaustively in a domain such as chess. In re- 
sponse, some researchers have begun to examine other 
methods that assign credit and blame while the search pro- 
cess is still under way. These include such heuristics as 
noting loops and unnecessarily long paths, noting dead 
ends, and noting failure to progress towards the goal. 
Systems that incorporate such “learning while doing” 
methods include Anzai’s HAPS [19], Ohlsson’s UPL 1201, 
and Langley’s SAGE.2 [15]. Ironically, these systems have 
all been tested in simple puzzle-solving domains, where 
the “learning from solution paths” method is perfectly 
adequate. One obvious research project would involve ap- 
plying these and other methods to more complex domains 
with long solutions and extensive search spaces. 

Modifying the Performance System 

Once credit and blame has been assigned to the moves 
made during the search process, one can modify the per- 
formance system so that it prefers desirable moves to un- 

desirable ones. If the perforniance component is stated as 
a set of condition-action rules, then one can employ the 
same methods used in learning from examples. In other 
words, one can search the space of conditions, looking for 
some combination that will predict all positive instances 
but none of the negative instances. However, since multi- 
ple operators are involved, one must search a separate rule 
space for each operator. When one or more rules have been 
found for each operator, they can be used to direct search 
through the original problem space; if these rules are suffi- 
ciently specific, they will eliminate search entirely. 

However, the task of learning search heuristics does 
place some constraints on the modification method that is 
employed. In particular, the learning system must be able 
to generate both positive and negative instances of its 
operators. This poses no problem for discrimination- 
based learning systems, since they begin with overly 
general move-proposing rules that lead naturally to 
search.* However, generalization-based systems are natu- 
rally conservative, preferring to make errors of omission 
rather than errors of commission. Such an approach 
works well if a tutor is present to provide positive and 
negative examples, but it encounters difficulties if a 
system must generate its own behavior. Ohlsson [20] has 
reported a mixed approach in which specific rules are pre- 
ferred, but very general move-proposing rules are retained 
and used in cases where none of the specific rules are 
matched. However, in their pure form, generalization- 
based methods do not seem appropriate for heuristics 
learning. 

Open Problems in Heuristics Learning 

We have seen that heuristics learning can be viewed as 
the general case of learning from examples, and many of 
the open problems in this area are closely related to those 
for concept learning. For instance, one can imagine com- 
plex domains for which no perfect rules exist to direct the 
search process. In such cases, one might still be able to 
learn probabilistic rules that will lead search down the op- 
timum path in most cases. This situation is closely related 
to the task of learning concepts from noisy data. Similarly, 
one can imagine attempting to learn search heuristics with 
an incorrect or incomplete representation. Finally, there 
are many domains in which some moves are better than 
others, but for which no absolute good or bad moves exist. 
As with learning from examples, most of the existing 
heuristics learning systems assume that “all or none” rules 
exist. Thus, even if one could modify the credit assignment 
methods to deal with such continuous classifications, it is 
not clear how one would alter the modification compo- 
nents of these systems. Each of these problems have been 
largely ignored in the machine learning literature, but we 
expect to see more work on them in the future. 

‘Neither does any problem arise for bi-directional approaches such 
as Mitchell’s version space method, since these can use the general boun- 
dary in proposing moves. 
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One recent departure from the sytztactic methods we 
described above corresponds closely with the causal rea- 
soning approach to learning from examples. Rather than 
relying on multiple solution paths to learn the hcuristic 
conditions on a set of operators, Mitchell, Utgoff. and 
Banerji [ 141 have explored a method for gathering max- 
imum information from a single solution path. This 
method involves reasoning backwards from the goal state, 
and determining which features of each previous state 
allowed the final operator in the sequence to apply. This 
method is used for each operator along the solution path, 
resulting in a macro-operator that is guaranteed to lead to 
the goal state. This method is very similar to that employed 
by Fikes, Hart, and Nilsson [21] in their early STRIPS 
system. Carbonell [22,23]  has explored a somewhat dif- 
ferent but related approach in  his work on problem solving 
by analogy. During its attempt to solve a problem, Car- 
bonell’s system retains information not only about the 
operators it has applied, but about the reasotis they were 
applied. Upon coming to a new problem, the system deter- 
mines if similar reasons hold there, and if so, attempts to 
solve the current problem by analogy with the previous 
one. Both Mitchell’s and Carbonell’s methods involve 
analyzing the solution path in order to take advantage of 
all the available information. As with learning from ex- 
amples, this approach to learning search heuristics has 
definite advantages over the more syntactic approaches. 
and we expect it to become more popular in the future. 

Learning from Observation: Conceptual Clustering 

For the moment, let us return to the task of learning 
concepts from examples. Another of the simplifying as- 
sumptions made in this task is that the tutor provides the 
learner with explicit feedback by telling him whether an 
instance is an example of the concept to be learned. How- 
ever, if we examine very young children, it is clear that they 
acquire concepts such as “dog” and “chair” long before 
they know the words for these classes. Similarly, scientists 
form classification schemes for animals, chemicals, and 

even galaxies with no one to guide them. Thus, it is clear 
that concept learning can occur without the presence of a 
benevolent tutor to provide feedback. The task of learning 
concepts in this way is sometimes called learning by ohser- 
vation. 

The Conceptual Clustering Task 

There are different types of learning by observation, 
but let us focus on what Michalski and Stepp [24] have 
called conceptual clustering, since this bears an interest- 
ing relation to learning from examples. In the conceptual 
clustering paradigm, one is presented with a set of objects 
or observations, each having an associated set of featurcs. 
The goal is to divide this set into classes and subclasses, 
with similar objects being placed together. The result is a 
taxonomic tree similar to those used in biology for classify- 
ing organisms. In fact, biologists and statisticians have 
developed methods for generating such taxonomies from a 
set of observations. However, these methods (such as clus- 
ter analysis and numerical taxonomy) focus on numeric 
attributes (e.g., length of tail), while the conceptual clus- 
tering task also allows symbolic features. 

Consider the set of objects shown in Figure 6 .  which 
vary on four binary attributes-size, shape, color and 
thickness of the border. Only four out of the sixteen possi- 
ble objects are observed, and the task is to divide these into 
disjoint groups that cover the observed objects. but that do 
not predict any of the unobserved ones. The classification 
tree shown in the figure satisfies these constraints while 
reflecting the regularities in the data. For instance, size 
and color are the only features that are completely cor- 
related, since all large objects are white and all small ob- 
jects are black. Thus, these two features are ideal for 
dividing the observations into two groups at the highest 
level. However, within these groups finer distinctions can 
be made, and the features of border-thickness and shape 
are useful at this level. 

This example points out two additional complexities in 
the conceptual clustering task over learning from ex- 

0 
FIG. 6.  A simple classification twc. 

0. 
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amples. First, classification schemes nearly always involve 
disjunctive classes, and any successful method must be 
able to handle them. (A  conjunctive clustering task would 
be one i n  which only a single object was observed, and 
would not be very interesting.) Second. concepts must be 
learned at mirltiple levels. For instance, in the above ex- 
ample the “concept” [(large and white) or (small and 
black)] must be generated at the first level, while the con- 
cepts [(thick and square) or (thin and circle)] and [(thick 
and circle) or (thin and square)] must be learned at the sec- 
ond level. Thus, the task of conceptual clustering can be 
viewed as a version of learning from examples that is more 
difficult along a number of dimensions-namely the ab- 
sence of explicit feedback, the presence of disjuncts, and 
the need for concepts at niultiple levels of description. 

Approaches to Conceptual Clustering 

Michalski and Stepp’s [24] approach to conceptual 
clustering takes advantage of this relationship. Basically, 
they employ a method for learning conjunctive concepts 
from example5 to determine the branches (or concepts) at 
each level in the classification tree, starting at the top and 
working downward. In order to do this, their system must 
have a set of positive and negative instances. These are 
based on a small set of N randonily selected srrd objects, 
and concepts are learned for each of these seed objects in 
such a manner that they do not cover any of the other 
seeds. Based on these concepts, a new set of seeds are pro- 
duced which represent the central tendency of each con- 
cept, and the process is repeated, generating a revised set 
of concepts. This strategy continues until  the seed objects 
stabilize, giving an optimal set of N disjoint classes. In ad- 
dition, the system must decide how t w t i y  classes should be 
used at each level in the classification tree. This is done by 
considering different numbers of seeds, and evaluating 
the resulting sets of concepts on their fit to the data. The 
best of these sets is used to add branches to the treee, and 
objects are sorted down the appropriate branches. The en- 
tire process is then repeated on each of these subsets of ob- 
jects, in order to add lower level branches to the classifica- 
tion scheme. 

As with learning from examples. approaches to concep- 
tual clustering can vary along a number of dimensions. 
For instance, though Michalski and Stepp’s method re- 
quires all data to be present at the outset, one can imagine 
systems that work in an incremental fashion. In fact, 
Lebowitz [2S] has reported such an incremental system. 
These two systems also differ in the way they organize 
search through the space of classification trees. Both 
systems carry out a depth-first search through this space, 
starting at the top with more general classes and adding 
more specific subclasses later. However. since Michalski 
and Stepp’s approach has all relevant data available at the 
outset, it can use this information to select the best branch 
at each point. In contrast, Lebowitz’s system is sometimes 
forced to restructure a classification tree as new observa- 
tions are made: this is equivalent to backing up through 

the space of classification trees, and trying an alternate 
path. This appears to be another case of the well-known A1 
tradeoff between knowledge and search: the more knowl- 
edge that is available (in this case in the form of data), the 
less search is required ( i n  this case through the space of 
classification trees). 

A final dimension of variation involves the order in 
which the classification tree is constructed. Both Michal- 
ski and Stepp’s and Lebowitz’s approaches begin at the 
top of the tree and work downward. For example, given the 
objects in Figure 6 ,  the distinction between large white ob- 
jects and small black objects would be made first, followed 
by the “finer” distinctions at lower levels in the tree. How- 
ever, there is no reason why a taxonomic scheme could not 
bc generated in the opposite order, classifying the most 
similar objects together first, and grouping the resulting 
classes afterwards. In fact, two systems that form concep- 
tual clusters in this manner have been described in the A1 
literature. Wolff’s 1261 MK 10 and SNPR [27] programs, 
which operate in the domain of grammar acquisition, 
form classes such as I I O I I I : ,  vwh ,  and udjlctive early in the 
learning process, and form more abstract classes in terms 
of these at a later time. Similarly, the GLAUBER program 
described by Langley, Zytkow, Bradshaw, and Sinion [ZS] 
discovers regularities in chemical reactions first by defin- 
ing classes such as ulkulis and riietuls, and only later 
defines classes such as buses in terms of them. Hopefully, 
future work will reveal the advantages and disadvantages 
of different approaches to the conceptual clustering task. 

Open Problems in Conceptual Clustering 

Most of the existing conceptual clustering systems are 
designed to handle attribute-value representations. Thus, 
one direction for future research in this area would involve 
extending these approaches to deal with relational or 
structural information. In addition, the reader may recall 
that the task of learning from examples can be trans- 
formed into the conceptual clustering task by removing 
the simplifying assumption of explicit feedback. However, 
niost work in conceptual clustering retains the assumption 
that the learned concepts are “all or none.” Thus, a second 
direction for research would involve extending these meth- 
ods, enabling them to learn inexact concepts such as dog 
or chair in which some features are more central than 
others. Since conceptual clustering methods do not rely on 
a strong distinction between positive and negative in- 
stances, this should be reasonably straightforward. It 
simply has not been a major focus of the researchers in this 
area. 

A final research area relates to the importance of./irrrc- 
iiotz in our everyday concepts. Nelson 1291 has argued that 
children’s very early concepts are often functional in 
nature. For example, a ball is something that one can 
bounce, and a chair is something that one can sit on. Only 
later, Nelson claims, are structural features added to these 
concepts. This suggests that a child’sgouls play an impor- 
tant role in the way he organizes his view of the world. 
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Moreover, this ties in with Winston’s [13] approach to 
learning from examples, in which the learner uses a func- 
tional description to simplify the learning of structural de- 
scriptions. One can imagine a learning system that, start- 
ing with certain goals, formulated a set of function-based 
core concepts without using explicit feedback, and which 
then used Winston’s method to add structural information. 
This would be a radically different approach to conceptual 
clustering, but one which appears to have considerable 
potential for modeling the human process of concept for- 
mation. 

Language Acquisition 

A fourth major area of machine learning research has 
dealt with the acquisition of language. In many ways, the 
literature on language learning stands apart from other 
work in the field. For instance, more of the researchers in 
this area have been concerned with modeling the human 
learning process than have workers in other areas of ma- 
chine learning. In addition, relatively little contact has 
been made between work in this area and the work on con- 
cept learning and strategy learning. For this reason, and 
for lack of space, we will not attempt to cover A1 ap- 
proaches to language acquisition in as much detail as we 
have other areas. Rather, we will attempt to state the prob- 
lem and provide a simple example. More detailed reviews 
of computational approaches to language learning can be 
found in Anderson [30], Pinker [31], and Langley [32]. 

Early research on language acquisition focused on in- 
ducing grammars to predict a set of sample sentences 
[33,34]. More recently, most workers have reformulated 
the task in terms of learning a mapping between a set of 
sentences and their meanings. Anderson [MI has argued 
that this situation is similar to that encountered by 
children, since early sample sentences generally refer to 
some situation or event present in the child’s environment. 
Figure 7 presents such a sample sentence and its meaning. 
Some workers have focused on sentence generation (most 
of the psychological data concerns children’s utterances), 
others have studied learning to understand sentences, and 

*boy *bouncs +red ball 

The boy bounce ed the red ball. 
FIG. 7. A simple source and its meaning. 

still others have been concerned with both issues, Some re- 
searchers have assumed that connections between con- 
cepts and their associated words are already known, while 
others attempt to learn this mapping along with the rela- 
tion between meaning structures and grammatical struc- 
tures. 

In modeling language acquisition, the learning system 
is presented with a set of legal sentences and their as- 
sociated meanings. The reader will recall that negative in- 
stances play an important role in learning from examples 
and learning search methods, and one would expect a 
similar situation here. Thus, the fact that only legal 
sentences are presented might be viewed as a serious prob- 
lem for language learning systems. However, recall that 
the task is to learn amapping between sentences and their 
meanings. This mapping is never carried out by a single 
rule, but rather by some set of rules. For a given sentence- 
meaning pair, some of these rules may apply correctly, 
some may fail to apply when they should, and still others 
may apply when they should not. The latter two cases cor- 
respond to positive instances (errors of omission) and 
negative instances (errors of commission), respectively. 
Thus, at the appropriate level of analysis, both positive 
and negative instances do arise in the language learning 
task. 

For example, in order to describe the meaning struc- 
ture in Figure 7, the learner must have some rule for saying 
the word “the,” another for “boy,” another for “bounce,” 
perhaps another for “ed,” and so forth. Each of these rules 
may be overly specific or overly general, leading to errors of 
omission or commission. In terms of finding the correct 
conditions on such rules, the language learning task is 
more difficult than the others we have examined, since ar- 
bitrary exceptions often occur. Thus, the learner may de- 
cide to say “ed” after the word for any past action, and 
then discover the numerous exceptions to this rule. In fact, 
young children often produce overgeneralizations like 
“runned” and “hitted,” though they eventually recover 
from these problems.* In addition, in order to organize its 
knowledge, the language learner may also need inter- 
mediate level rules for describing the agent of an event, the 
action, and so on. This further complicates the learning 
task, since errors can occur at different levels in such 
hierarchical schemes, making credit and blame difficult 
to assign. 

In summary, the language acquisition task involves 
learning a mapping between sentences and their mean- 
ings. In turn, this provides the equivalent of positive and 
negative instances, letting the learner acquire rules in 
much the same fashion as in other areas of machine learn- 
ing. However, the task is more difficult than most in that it 
often involves arbitrary exceptions, as well as intermediate 
level rules for which one can never attain complete feed- 
back. The language acquisition task is complex enough 

*Selfridge 1351 has developed a computational model of this process 
of overgeneralization and recovery. 
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that we cannot hope to cover it adequately here; however, 
this brief overview may have given the reader some idea of 
its relation to, and differences from, other areas of 
machine learning. 

Conclusions 

In this article we examined some of the task domains 
studied by researchers in machine learning-learning 
from examples, learning search methods, conceptual 
clustering, and language acquisition-and considered 
some relations between those domains. A number of com- 
mon threads emerged from this examination. One of these 
was the notion of search through a space of rules, and 
various methods for directing the search through this 
space. Another was the idea that learning from examples 
can be viewed as a simpler version of the more complex 
tasks of learning search heuristics and conceptual cluster- 
ing, in that credit assignment is simplified and feedback is 
present. We found that some areas, such as data-driven 
approaches to learning from examples, appear to be 
relatively well understood, while in other areas, such as 
learning during the search process, much work remains to 
be done. In each of the domains we examined, we found a 
number of open issues that remain to be explored. Among 
the most exciting of these was the potential for using func- 
tional or causal information in directing the learning pro- 
cess. 

In addition to those aspects of machine learning we 
have covered, ongoing research is addressing a number of 
exciting topics we have not had the space to discuss. One of 
these involves attempts to automate the process of scien- 
tific discovery [ 11,361; ultimately this may lead to advisory 
systems that aid scientists in their research. Another area 
that has received considerable attention recently concerns 
methods for reasoning by analogy with prior experience 
[23]; systems that solve problems in this manner could be 
considerably more flexible than existing A1 programs. 
Another research focus is learning from instruction, in 
which the system acquires knowledge directly from a text- 
book or tutor. This is probably the most immediately ap- 
plicable of all machine learning methods, due to recent ad- 
vances in natural language processing. Machine learning, 
despite its recent emergence, has developed nearly as 
many fascinating problems as researchers to pursue those 
problems. As a result, more colleagues are always wel- 
come, and we hope we have communicated some of the ex- 
citement in this rapidly developing field to the reader. 
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